edexcel

Mark Scheme (Results)

January 2014

IAL Chemistry (WCH04/01)

Unit 4: General Principles of Chemistry I

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037633
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	C		1

Question Number	Correct Answer	Reject	Mark
$2(\mathrm{a})$	B		1

Question Number	Correct Answer	Reject	Mark
$2(\mathrm{~b})$	D		1

Question Number	Correct Answer	Reject	Mark
2 (c)	B		1

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Correct Answer	Reject	Mark
4	C		1

Question Number	Correct Answer	Reject	Mark
$5(\mathrm{a})$	D		1

Question Number	Correct Answer	Reject	Mark
$5(\mathrm{~b})$	A		1

Question Number	Correct Answer	Reject	Mark
6	C		1

Question Number	Correct Answer	Reject	Mark
7	D		1

Question Number	Correct Answer	Reject	Mark
8	B		1

Question Number	Correct Answer	Reject	Mark
$9(\mathrm{a})$	B		1

Question Number	Correct Answer	Reject	Mark
$9(\mathrm{~b})$	A		1

Question Number	Correct Answer	Reject	Mark
$9(\mathrm{c})$	C		1

Question Number	Correct Answer	Reject	Mark
10	D		1

Question Number	Correct Answer	Reject	Mark
11	D		1

Question Number	Correct Answer	Reject	Mark
12	B		1

Question Number	Correct Answer	Reject	Mark
13	D		1

Question Number	Correct Answer	Reject	Mark
14	C		1

Question Number	Correct Answer	Reject	Mark
15	A		1

Total for Section $A=20$ marks

Section B

Question Number	Acceptable Answers	Reject	Mark
$16(\mathrm{a})$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	
ALLOW displayed formula	molecular formula	1	

Question Number	Acceptable Answers	Reject	Mark
16(b)	I GNORE conditions and solvents, even if incorrect	incorrect formulae, including subscripts written as large numbers or superscripts eg LiAlH4/LiAlH ${ }^{4}$ any charges	
	Step 1 LiAlH_{4}	NaBH_{4}	
	ALLOW lithium tetrahydridoaluminate((III)) lithium aluminium hydride	H_{2} /hydrogen	
	Step 2 PCl_{5}		
	ALLOW phosphorus(V) chloride/ phosphorus pentachloride $\mathrm{HCl} /($ concentrated) hydrochloric acid PCl_{3} / phosphorus(III) chloride/ phosphorus trichloride SOCl_{2} / thionyl chloride	dilute hydrochloric acid	
	Step 4 $\mathrm{HCl} / \mathrm{HCl}(\mathrm{aq}) / \mathrm{HCl}$ in water or $\mathrm{H}_{2} \mathrm{O}$ ALLOW any strong acid/ H^{+}/ $\mathrm{NaOH} /$ sodium hydroxide follow ed by $\mathrm{HCl} /$ hydrochloric acid	just 'dilute acid' just 'concentrated acid' just ' $\mathrm{H}_{2} \mathrm{O}$ / water'	
	Step 5 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (and any strong acid) ALLOW ethanol	$\mathrm{OHCH}_{2} \mathrm{CH}_{3}$	4

Question Number	Acceptable Answers	Reject	Mark
16(c)	$\begin{aligned} & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \\ & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ ALLOW butanoic acid as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ / $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} / \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H} /$ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2} \mathrm{H}$ and the salt as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} /$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2}^{(-)} \mathrm{Na}^{(+)} /$ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}^{(-)} \mathrm{Na}^{(+)}$ all product formulae correct correct balanced equation ALLOW correct ionic equation for (1) $\begin{aligned} & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{3}^{2-} \rightarrow \\ & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ I GNORE state symbols even if incorrect		2

Question Number	Acceptable Answers	Reject	Mark
16(d)	Any two correct points from: First point butanoic acid has 4 peaks, butan-1-ol has 5 peaks OR butanoic acid has one peak fewer OR butan-1-ol has one peak more ALLOW butanoic acid has fewer peaks/ butan-1-ol has more peaks I GNORE butanoic acid has 4 proton environments and butan-1-ol has 5 Second point ratio of peak heights/ area under each peak is 3:2:2:1 for butanoic acid and 3:2:2:2:1 for butan-1-ol Third point the OH (hydrogens) have different chemical shifts OR butanoic acid has a (COOH) peak at 10-12 (ppm) (and butan-1-ol does not) OR butan-1-ol has (an OH) peak at 2-4 (ppm) (and butanoic acid does not) Fourth point peak at 3.0-1.8 (ppm) for $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ in acid and not in the alcohol OR peak at 3.0-4.4 (ppm) for $\mathrm{H}-\mathrm{C}-\mathrm{O}$ - in alcohol and not in acid OR the hydrogens on the alpha carbon have different chemical shifts I GNORE reference to splitting patterns	incorrect numbers of peaks quoted different number of peaks area under peaks in the ratio 8:10 incorrect data quoted incorrect data quoted	

Question Number	Acceptable Answers	Reject	Mark
16(e)	First mark - bond and range $\mathrm{C}=\mathrm{O}$ (stretching) in butanoic acid (has an absorption at) $1725-1700\left(\mathrm{~cm}^{-1}\right)$ Second mark - bond and both ranges $\mathrm{O}-\mathrm{H} / \mathrm{OH}$ (stretching) in butan-1-ol $3750-3200\left(\mathrm{~cm}^{-1}\right)$ and $\mathrm{O}-\mathrm{H} / \mathrm{OH}$ (stretching) in butanoic acid $3300-2500\left(\mathrm{~cm}^{-1}\right)$ ALLOW COOH in butanoic acid ALLOW any wavenumber or range of wavenumbers within the ranges above and ranges written in reverse order If no other marks are awarded, then ALLOW 1 mark if all 3 ranges are identified but bonds are missing/incorrect I GNORE reference to fingerprint region	$\mathrm{COOH} /$ incorrect name of bond/ 1740-1720 $\left(\mathrm{cm}^{-1}\right)$ / other incorrect range incorrect name of bonds	

Question Number	Acceptable Answers	Reject	Mark
$16(\mathrm{f})$	O		
	IGNORE bond lengths and bond angles ALLOW any orientation		1

Question Number	Acceptable Answers	Reject	Mark
16(g)	First step - $\mathrm{PCl}_{5} /$ phosphorus(V) chloride/ phosphorus pentachloride ALLOW PCl_{3} / phosphorus(III) chloride/ phosphorus trichloride SOCl_{2} / thionyl chloride Second step - conditional on first mark $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} /$ ethanol Advantage - stand alone mark higher yield (of ester) OR reaction goes to completion/ not an equilibrium reaction/ not reversible OR no heat energy needed/ reacts at room temperature/ no (concentrated acid) catalyst needed I GNORE atom economy/ faster/ requires less energy	HCl	

Total for Question $16=15$ marks

Question Number	Acceptable Answers	Reject	Mark
17(a)	Method 1 - gas collection Diagram 2 marks stoppered/ sealed side arm test tube/ stoppered/ sealed test tube with delivery tube/ stoppered/ sealed side arm flask/ stoppered/ sealed flask with delivery tube gas syringe OR collection of gas over water in a measuring cylinder/ upturned burette/ graduated gas tube I GNORE heat Measurements volume of gas and time Method 2 - mass loss Diagram 2 marks digital balance flask with cotton wool/ mineral wool in neck OR open flask/ beaker Measurements mass (loss) and time Method 3 - colour change Diagram 2 marks colorimeter light and filter shown Measurements transmission/ absorbance and time	amount of gas	3

Question Number	Acceptable Answers	Reject	Mark
$17(\mathrm{~b})(\mathrm{i})$	s^{-1} ALLOW $1 / \mathrm{s}$ sec $^{-1}$ any actual unit of time to power -1	time $^{-1}$ t^{-1}	

Question Number	Acceptable Answers	Reject	Mark
17(b)* (ii)	First mark $1^{\text {st }}$ Step - slow $2^{\text {nd }}$ Step - fast $3^{\text {rd }}$ Step - fast Second mark - stand alone the slow(est)/ first step is the rate determining step Third mark - consequential on correct first mark (1 mol) $\mathrm{N}_{2} \mathrm{O}_{5}$ is in the rate equation so the reaction with $\mathrm{N}_{2} \mathrm{O}_{5}$ is the slow/ rate determining step OR only the species in the rate equation is in the first/ slow/ rate determining step ALLOW (there is only 1 mol of) one species/ $\mathrm{N}_{2} \mathrm{O}_{5}$ in the first/ slow/ rate determining step ALLOW $1^{\text {st }}$ Step - fast $2^{\text {nd }}$ Step - slow $3^{\text {rd }}$ Step - fast the slow(est) step/second step is the rate determining step there is only (1 mol of) one species in the steps up to and including the rate determining step		

Question Number	Acceptable Answers	Reject	Mark
$17(\mathrm{c})(\mathrm{i})$	(thermostatically controlled) water bath/ ice bath ALLOW oil bath	direct heating with flame	1

Question Number	Acceptable Answers	Reject	Mark	
$17(\mathrm{c})(\mathrm{ii})$	$(1 / \mathrm{T}) 3.13 \times 10^{-3} / 3.125 \times 10^{-3}$	(1)	3.12×10^{-3}	
	$(\ln k)-7.1 /-7.05 /-7.0528$	(1)	-7.0	2

Question Number	Acceptable Answers	Mark
$\begin{array}{\|l} \hline 17(\mathrm{c}) \\ \text { * (iii) } \end{array}$	 Graph - 3 marks First mark axes correct with sensible scales i.e. points/line covering at least 3 large squares on the x axis and 5 on the y axis, with Ink values becoming more negative down the axis and the negative signs shown Second mark both axes labelled, with units on x axis and no units on y axis x axis: 3.1-3.5 $1 / \mathrm{T} / 10^{-3} \mathrm{~K}^{-1}$ OR 3.1-3.5 $1 / \mathrm{T} \times 10^{3} / \mathrm{K}^{-1}$ OR $0.0031-0.0035$ OR $3.1 \times 10^{-3}-3.5 \times 10^{-3} 1 / \mathrm{T} / \mathrm{K}^{-1}$ ALLOW x axis labels at bottom of page Third mark	

Total for Question $17=17$ marks

Question Number	Acceptable Answers	Reject	Mark
18(a)(i)	I GNORE sf except 1 If answer is $8.485 \times 10^{-3}\left(\right.$ moldm $\left.^{-3}\right)$, aw ard 2 marks If not, $\begin{align*} {\left[\mathrm{OH}^{-}(\mathrm{aq})\right] } & =\sqrt{ }\left(K_{\mathrm{b}}\left[\mathrm{NH}_{3}\right]\right) \\ & =\sqrt{ }\left(1.8 \times 10^{-5} \times 4.0\right) \tag{1}\\ & =8.485 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$		2

Question Number	Acceptable Answers	Reject	Mark
18(a)(ii)	I GNORE sf except 1 If answer is 11.9(3)/ 12, aw ard 2 marks If not, EI THER - Method 1 $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}} \\ & =\frac{1 \times 10^{-14}}{8.485 \times 10^{-3}} \\ & =1.179 \times 10^{-12} \end{aligned}$ ALLOW ecf from their answer to (i) $\begin{equation*} \mathrm{pH}=-\log 1.179 \times 10^{-12}=11.9(3) \tag{1} \end{equation*}$ ALLOW ecf from their answer for $\left[\mathrm{H}^{+}\right]$ OR - Method 2 $\begin{equation*} \mathrm{pOH}=-\log 8.485 \times 10^{-3}=2.07 \tag{1} \end{equation*}$ ALLOW ecf from their answer to (i) $\mathrm{pH}=(14-2.07=) 11.9(3)$ ALLOW ecf from their answer to pOH		

Question Number	Acceptable Answers	Mark
$18(\mathrm{~b})(\mathrm{i})$	$\begin{array}{r} \left(\mathrm{pH}_{1}=-\log 4.0\right) \\ ==0.6(021) \end{array}$	1
	 First mark graph starting at $11.9 /$ answer to a(ii), ± 1 small square, provided above 7 Second mark buffering region to $25 \mathrm{~cm}^{3}$ ALLOW any line showing a decrease in pH from 0 to $25 \mathrm{~cm}^{3}$ of HCl added Third mark straight vertical portion between 8 and 1, midpoint below 7 and between 2 and 7 pH units long Fourth mark finishing at +0.5 to -0.8 , with at least $27.5 \mathrm{~cm}^{3}$ of HCl added ALLOW final pH as answer to (b)(i), within 1 pH unit, if pH is less than answer to (b)(i) or within 1 small square if pH is more than answer to (b)(i) ALLOW If graph is drawn with aqueous ammonia added to hydrochloric acid, only the second and third marks are available for the correct vertical portion at $25 \mathrm{~cm}^{3}$	

Question Number	Acceptable Answers	Reject	Mark
18(b)* (iii)	First mark any indicator from 4 to 10 or 12,13 in the Data booklet - see end ALLOW ecf from the vertical portion on their graph Second mark alkaline to acidic colour change for their stated indicator ALLOW acidic to alkaline colour change if their curve shows alkali added to acid Third mark pH range (of indicator) is within the vertical section of the graph OR $\mathrm{pKin}(\pm 1)$ is in the vertical section of the graph OR pKin is nearest to the pH at the end/ equivalence point ALLOW indicator will change colour in the vertical section of the graph ALLOW Indicator will change colour at the end/ equivalence point ALLOW (because it is a) titration of a strong acid with a weak base	universal indicator loses all 3 marks litmus loses first mark only	

Question Number	Acceptable Answers	Mark
18(c)(i)	I GNORE sf except 1 If answer is $3.84\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, aw ard 3 marks If not, number of moles of acid $=$ $\begin{equation*} \frac{24.0 \times 4}{1000}=0.096 \tag{1} \end{equation*}$ El THER number of moles ammonia $=0.096$ in $25 \mathrm{~cm}^{3}$ concentration of ammonia $\begin{align*} & =\frac{0.096 \times 1000}{25} \\ & =3.84\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ OR number of moles ammonia $=0.288$ in $75 \mathrm{~cm}^{3}$ concentration of ammonia $\begin{align*} & =\frac{0.288 \times 1000}{75} \\ & =3.84\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ I GNORE unit unless incorrect ALLOW ecf in both methods on their number of moles of ammonia	3

Question Number	Acceptable Answers	Mark
18 (c)(ii)	IGNORE sf except 1 (concentration of ammonia in trichloromethane $=) 0.16\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	
	ALLOW ecf from their answer to (c)(i), provided it is less than 4.0 and given to 2 or more sf	1

Question Number	Acceptable Answers	Reject	Mark
$18(\mathrm{c})(\mathrm{iii})$	Expression for Kc and answ er needed for the mark $K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}{\left[\mathrm{NH}_{3}\left(\mathrm{CHCl}_{3}\right)\right]}$ ALLOW one state symbol missing $=\frac{3.84}{0.16}$ $=24(.0)$	K_{c} expressions without both state symbols	
	 IGNORE sf, including 1 sf, and units ALLOW ecf from answers to (c)(i) and (c)(ii)		

Question Number	Acceptable Answers	Reject	Mark
$18(\mathrm{c})$ (iv)	(ammonia/ it is much more soluble in water) as can form hydrogen bonds with w ater ALLOW more/ stronger hydrogen bonds with water (than with trichloromethane) IGNORE answers based on polarity/ hydrophilic		

[^0]| Question Number | Acceptable Answers | | Mark |
| :---: | :---: | :---: | :---: |
| 19(a)(i) | Penalise lack of + sign once only in (a)(i) or (ii) in answer
 I GNORE sf in (a)(i), (ii), and (iii) in each final answer, ex
 FIRST, CHECK THE FINAL ANSWER
 $+479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 3 marks
 $479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 2 marks (+ sign missing)
 +479.7/ 479.7 scores 2 marks (units and/or + missing)
 $+1709.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 2 marks - multiple of 12 used
 $1709.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+1709.7 / 1709.7$ score 1 mark - mutio used for oxygen and positive sign and/or units
 If these answers are not given, award marks as follows:
 First mark
 correct data for CO_{2} (213.6) and $\mathrm{H}_{2} \mathrm{O}$ (69.9)
 Second mark
 correct multiples (12, 11, 1 and 24) and Hess's Law app $\begin{aligned} \Delta S_{\text {system }}^{\ominus} & 12 \times 213.6+11 \times 69.9 \\ & -(392.4+24 \times 102.5) \end{aligned}$
 ALLOW ecf from incorrect data for CO_{2} and/or $\mathrm{H}_{2} \mathrm{O}$
 Third mark
 correct answer with sign and units $=+479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
 ALLOW ecf from incorrect data for CO_{2} and/or $\mathrm{H}_{2} \mathrm{O}$ and i multiples | each final
 xcept 1 sf
 for oxygen
 ltiple of 12
 (1)
 ied
 (1)
 ncorrect
 (1) | 3 |
| Question Number | Acceptable Answers | Reject | Mark |
| 19(a)(ii) | If answer is $+18925.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /$
 $+18.9252 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then aw ard 2 marks
 If not, $\begin{align*} \Delta S_{\text {surroundings }}^{\ominus}= & \frac{-\Delta H^{\ominus}}{\top} \tag{1}\\ = & -\frac{(-5639.7) \times 1000}{298} \\ = & +18925.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \\ & +18.9252 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ | $\begin{aligned} & +18925.1 \\ & \mathrm{~J} \mathrm{~mol} \\ & +18.9251 \\ & \mathrm{~K} \mathrm{~K}^{-1} / \\ & \mathrm{kJ} \mathrm{~mol} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ | 2 |

Question Number	Acceptable Answers	Mark
19(a)(iii)	First mark $\begin{aligned} \left(\Delta S_{\text {total }}^{\ominus}\right. & \left.=\Delta S_{\text {surroundings }}^{\ominus}+\Delta S_{\text {system }}^{\ominus}=18925.2+479.7\right) \\ & =(+) 19404.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 19.4049\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$ if units given they must be correct ALLOW $(+) 19500\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 19.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(\text { from } 19.0+0.480)$ ALLOW ecf on adding answers to (a)(i) and (a)(ii) in the same units (1) Note If answer to (a)(i) was +1709.7, $\Delta S_{\text {total }}^{\ominus}=+20634.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)^{\prime} /+20.6349\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Second mark (ΔS^{\ominus} total is positive so) reaction is (thermodynamically) spontaneous/ feasible/ goes to completion ALLOW thermodynamically unstable If their sign for $\Delta S_{\text {total }}^{\ominus}$ is negative, then ALLOW reaction is not spontaneous/ not feasible/ does not go to completion	2

Question Number	Acceptable Answers	Reject	Mark
19(a)(iv)	I GNORE comments on ΔS^{\ominus} system First mark ($\Delta S_{\text {surroundings }}^{\ominus}=-\Delta H^{\ominus} / T$ so increase in T makes $)$ $\Delta S^{\ominus}{ }_{\text {surroundings }}$ less positive/ decreases ALLOW more negative Second mark (ΔS^{\ominus} total $=\Delta S^{\ominus}$ surroundings $+\Delta S^{\ominus}{ }_{\text {system }}$ so increase in T makes) ΔS^{\ominus} total less positive/ decreases ALLOW more negative NOTE no ecf on ΔS^{\ominus} surroundings increases Third mark (because ΔS° total is so large and positive to start with) there is an insignificant effect on the extent of the reaction ALLOW $\Delta S_{\text {total }}^{\ominus}$ is still positive so reaction still goes to completion/is spontaneous ALLOW ecf on ΔS^{\ominus} total increases	more exothermic	

Question Number	Acceptable Answers	Reject	Mark
$19(\mathrm{a})(\mathrm{v})$	First mark (stable because) high activation energy/ Ea (for combustion of sucrose) ALLOW sucrose is kinetically stable/ inert (1) Second mark (hazardous because small particles/ powder have/ has) (1) larger surface area and react faster I GNORE any reference to temperature If answers are not linked to stability and hazardous, still award both marks even if the points are written in the wrong order		

Question Number	Acceptable Answers	Reject	Mark
19(a)(vi)	Any two of: obesity/ weight gain/ stored as fat/ get fat tooth decay/ cavities/ toothache diabetes/ glycosuria heart/ cardiovascular condition/ disease/ attack (1) strokes damage to the immune system high insulin levels high blood pressure kidney damage liver disease headaches/ migraines arthritis high cholesterol risk of cancer/ high blood sugar/ stomach ulcers		2

Question Number	Acceptable Answers	Reject	Mark
$19(\mathrm{~b})(\mathrm{i})$	circles or asterisks on carbons 2-5	(2)	all 6 carbons circled (0)
	all four correct	(1)	
	3 or 2 correct	(0)	
	1 or 0 correct	(1)	
	ALLOW 5 carbons circled		2

Question Number	Acceptable Answers	Reject	Mark
$19(\mathrm{~b})(\mathrm{ii})$	rotate the plane of (plane-) polarized light ALLOW rotate plane-polarized light IGNORE optically active/ optical activity/ non- superimposable	just 'rotate light'	

Question Number	Acceptable Answers	Reject	Mark
19(b)(iii)	First mark - colour change from a blue (solution) to a red/ orange/ brown/ yellow precipitate ALLOW solid or (s) for precipitate which could be shown in formula or equation Second mark - functional group (glucose/it is) an aldehyde / (has) a CHO group Third mark - oxidation/ reduction copper(II)/Cu ${ }^{2+}$ is reduced (to copper(I)/Cu ${ }^{+}$ oxide by the aldehyde group) $/ \mathrm{Cu}^{2+}+\mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{+}$ OR the aldehyde/ glucose is oxidized (to the carboxylate/carboxylic acid)/ $\mathrm{RCHO}+[\mathrm{O}] \rightarrow \mathrm{RCOOH}$ OR Benedict's and Fehling's (solutions) are oxidizing agents ALLOW equation showing oxidation of aldehyde and reduction of Cu^{2+} even if not balanced	incorrect observation for one of the reagents for first mark only, eg. silver mirror formed	

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

[^0]: Total for Question 18 = 18 marks

